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odification [J.K. Nicholson, J.C. Lindon, E. Holmes, Xenobiotica 29 (1999) 1181–1189]. The analysis of these data invol
ppropriate multivariate statistical methods; Principal Component Analysis (PCA) has been documented as a valuable pa

echnique for1H NMR spectral data [J.T. Brindle, H. Antti, E. Holmes, G. Tranter, J.K. Nicholson, H.W. Bethell, S. Clarke, P.M. S
cKilligin, D.E. Mosedale, D.J. Grainger, Nat. Med. 8 (2002) 1439–1444; B.C. Potts, A.J. Deese, G.J. Stevens, M.D. Reily, D

. Theiss, J. Pharm. Biomed. Anal. 26 (2001) 463–476; D.G. Robertson, M.D. Reily, R.E. Sigler, D.F. Wells, D.A. Paterson
oxicol. Sci. 57 (2000) 326–337; L.C. Robosky, D.G. Robertson, J.D. Baker, S. Rane, M.D. Reily, Comb. Chem. High Throug
2002) 651–662]. Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenou
3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spe
egions and normalization has not been well studied. The variability structure and classification accuracy on two distinctly di
re assessed via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of s
egions. The first dataset consists of urine from 15 male Wistar–Hannover rats dosed with ANIT measured at five time poi
rug-induced cholangiolitic hepatitis [D.G. Robertson, M.D. Reily, R.E. Sigler, D.F. Wells, D.A. Paterson, T.K. Braden, Tox
2000) 326–337; J.P. Shockcor, E. Holmes, Curr. Top. Med. Chem. 2 (2002) 35–51; N.J. Waters, E. Holmes, A. Williams, C
.D. Farrant, J.K. Nicholson, Chem. Res. Toxicol. 14 (2001) 1401–1412]. The second data is serum samples from young
ice subjected to instillation of pancreatic elastase producing emphysema type symptoms [C. Kuhn, S.Y. Yu, M. Chraplyv
.M. Senior, Lab. Invest. 34 (1976) 372–380; C. Kuhn, R.M. Senior, Lung 155 (1978) 185–197]. This study indicates that i

he normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size
ntegration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) have higher variability with
ccuracy over spectral integration window widths than data scaled to the total intensity of the spectrum. Of the top 10 latent v
NIT dataset the auto-scale normalization has standard deviations larger than the total-scale in seven cases. In the case
tandard deviations are larger for the auto-scaling.
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1. Introduction

Metabonomic analyses involve the interpretation
dynamic metabolic responses of an organism to a patho
cal event or genetic modification[1]. The metabolic profile of
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the low molecular weight components in biofluids (e.g., urine,
serum) reflects the concentration and fluxes of endogenous
metabolites involved in key intermediary cellular pathways
that are involved in the processes used to acquire and use
energy, biosynthesize cellular components, and catabolize
wastes. Although metabonomics is one of the most recently
named “omics” technologies, it is based on decades of bio-
chemistry with an emphasis on metabolism[10]. Historical
approaches used for measuring changes in the metabolite
composition of biofluids relied on the ability to monitor
one (or at best a very limited number) of metabolic prod-
ucts and/or byproducts. These approaches were limited by
the number of variables that affect metabolite concentrations
in situ and by the commonality of biochemical processes
disrupted by any change in metabolism. Metabonomics is
a superior approach because the analytical measurements
describe an overall pattern, or “fingerprint”, of biochemical
change that is more consistent and predictive of metabolic
changes.

Metabonomics involves the use of advanced analyti-
cal methods and the application of appropriate multivari-
ate statistical techniques to search for patterns in the data.
The premise is that changes in this profile of endogenous
molecules can be used as a rapid screen for human risk
assessment or as a tool to diagnose disease and monitor
treatment outcomes. Metabonomic analyses have revealed
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bers are smaller for the second dataset, 12 observations over
12720 variables; two dosages at two time points. Of specific
interest is to determine if a specific window width integra-
tion region or normalization approach results in improved
classification accuracy for both datasets.

2. Experimental description of data

The data motivating the evaluation of metabonomic
data processing, specifically the spectral integration window
width and normalization, were from two in-house studies at
Pacific Northwest National Laboratory. The first dataset is of
the urine of 15 male Wistar–Hannover rats dosed with ANIT
and measured at five time points to create a state similar
to drug-induced cholangiolitic hepatitis in humans[4,6,7].
The second data set is of the serum of 12 pooled samples of
young male C57BL/6 mice subjected to instillation of pan-
creatic elastase[8,9] to produce structural damages in the
lung that mimic emphysema in humans[14–17]. The exper-
imental descriptions of each of these two datasets are given
as reference.

2.1. Administration, sample collection and sample
preparation
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The variability structure and classification accuracy

CA is assessed for two distinctly different1H NMR spectra
atasets under an array of spectral integration region
oth normalization techniques. The first processed da
rior to spectral integration is represented as 75 obs

ions over 47317 variables; five time points for 15 male
xposed to�-naphthylisothiocyanate (ANIT). These nu
.1.1. ANIT
Young male Wistar–Hannover rats (∼12 weeks) wer

osed with a single gavage administration of ANIT in corn
t a dosage of 20 mg/kg of body weight (BW) in a dosing
me of 5 mL/kg of BW. Following the dose administrat

he urine was collected continuously in the following ti
ntervals: 0–23, 24–48, 48–72, and 72–96 h. Urine was
ected in polypropylene tubes containing 1 mL of 1% sod
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ce. Both cold collection and sodium azide treatment
ssential to prevent bacterial contamination from interfe
ith NMR analysis and minimizes metabolic degradat
rozen urine samples (−70◦C) were thawed and dilute
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.1.2. Elastase
Young male C57BL/6 mice (∼14 weeks) were subject

o intra-tracheal instillation to porcine pancreatic elasta
dosage of 37.5 U/kg of BW or saline; dosing volume≤
0.07 mL. On weeks one or four post-dosing, the mice w
uthanized by IP injection of pentobarbital (IP;∼150 mg/kg)
nd bled via vena cava. Blood was drawn into glass t
ithout coagulation activators. Samples were pooled in c
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erum from each mouse was diluted∼60:40 serum:buffe
0.133 to 0.200 mL of 0.2 M sodium phosphate (pH 7
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Aldrich Chemical Co.] to minimize pH variations. An aliquot
(27 to 41�L) of 2,2′,3,3′-deuterotrimethylsilylproprionic
acid (TSP; Aldrich Chemical Co.) prepared in deuterium
oxide (D2O; Aldrich Chemical Co.) was added to the diluted
serum which resulted in a final concentration of 0.1 mM TSP
in 7.5% (by volume) D2O. The D2O and TSP were added to
provide an internal frequency lock and chemical shift refer-
ence, respectively. Volumes ranging from 360 to 541�L of
each sample were transferred to 178 mm glass ultra precision
NMR tubes (Norell, Inc.).

2.2. NMR methods

NMR free-induction decays (FIDs) were acquired on a
Varian Unity 600 NMR spectrometer (Varian Inc., Palo Alto,
CA) in a manual sampling mode. Final spectra were accumu-
lations of 16 individual FIDs. Each FID was induced using a
nonselective, 90◦ excitation pulse (6�s at 63 dB) following
a selective soft pulse (1.5 s at 3 dB) set on the water reso-
nance and digitized into 32 K complex data points. A total
inter-excitation pulse delay of 3.0 s, initiated by a gradient
homogeneity spoil, was used to destroy residual transverse
magnetization. A spectral width of 6983.24 Hz resulted in an
FID acquisition time of 4.679 s for a total recycle time of 7.7 s
[4].
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protocols (i.e., treatment group, NMR scan date and time).
The Varian data FID files were converted to Felix format.
The FIDs were multiplied by a squared sinebell decay func-
tion, and converted to frequency domain using fast Fourier
transformation (FFT). After FFT, the data were individually
phased and subjected to convolution baseline correction using
the “abl” routine in Felix.

3. Basic Statistical methods

The raw spectral files were imported into a common
statistical analysis package; MATLAB® 6.50 Release 13
(Mathworks, Inc., Natick, MA). Raw data pre-processing,
i.e., baseline correction and endogenous region removal, was
performed with in-house MATLAB® code. These endoge-
nous peak removals minimize the effects of properties such
as imperfect water saturation and peaks of non-interest, such
as urine. To assure as little information loss as possible, the
regions excluded from analysis were kept as conservative as
possible; the regions less than 0.5 ppm and regions containing
urea (5.5 to 6.0 ppm) and water (4.5 to 5.2 ppm) resonances.
This full reduced dataset prior to the integration, normaliza-
tion and exploratory data analysis (EDA) were 47317 and
12720 measurements for ANIT and elastase, respectively.
Fig. 1 gives a representative1H spectrum for treated ANT
a
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Datasets consisting of NMR FIDs taken over time w
ritten to data files and transferred to a Silicon Grap

ndigo workstation (Silicon Graphics, Inc., Mountain Vie
A) where they were processed with Felix 97.0 (Acce
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Fig. 1. Representative1H NMR spectra o
nd elastase samples.

.1. Normalization

The purpose of normalization is to remove systematic
tion which affects the measured spectra. The multiva
MR spectral dataset can be described asp random vari
bles onn observations (or spectrums),X1, X2, . . . Xn; xij

ed sample from (a) ANIT and (b) elastase.
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is the jth intensity measure of spectrumi. The most com-
mon approach to normalization in metabonomics has been to
divide each element in each spectrum by the total intensity of
the spectrum, forcing each spectrum to sum to one[3,7,13]

Zi = Xi∑
jxij

referred to here as total-scale. Alternatively, other analyses
have auto-scaled the data to mean zero and unity variance
[4,12]

Zi = Xi − µi√
σx

i

whereµi andσ2
i are the mean and variance of theith spectrum,

respectively. Both normalization approaches are applied post
spectral integration.

3.2. Principal component analysis

PCA is a statistical approach that yields patterns and
relationships in multivariate datasets, facilitating an under-
standing into the causes and effects behind the relationships.

At the heart of this method is the generation of a new coordi-
nate system where the new variables are independent linear
combinations of the original variables and simultaneously
capture some features in the original data. A feature depicts
some aspect of the data, described as numerical values for
each object. The fundamental tenet behind PCA is the exis-
tence of relationships between these numerical values for
each object. Although allp variables are required to repro-
duce all information in the data, often most of the structural
information in the original variables can be accounted for by
a smaller number of factors,k < p, often referred to as loading
vectors or latent variables. Possessing the ability to take large
multivariate datasets from high- to low-dimensional space
with little information loss, redundancy in the data is often
reduced, leading to a set of features easy to visually explore
and more computationally attractive to classification[18].

In PCA,p gives the formal dimension of the problem, the
underlying eigenvalue problem of PCA is generally solved
using the covariance matrix (pxp). Due to the size ofp in this
case (47317 or 12720), this is a computational challenge and
is one reason for the spectral integration step accompany-
ing metabonomics analyses. But the effective dimension of
the data is actually just one less than the number of samples
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ig. 2. Plot of PCI vs. PC2 for the un-integrated datasets under total-scale
espectively.
((a) and (c)) and auto-scale ((b) and (d)) normalization for ANIT and elastase,
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(n − 1); hence the PCA problem can be solved using a singu-
lar value decomposition (SVD) approach. Both datasets were
subjected to PCA analysis using the “pca.m” function that
performs PCA using SVD in the PLSTOOLBOX (Eigen-
vector Research Inc., Manson, WA) of MATLAB®.

4. Results and discussion

An evaluation of an array of spectral integration win-
dow widths, ranging from 0 to 0.1 ppm in increments of
0.001 ppm, using PCA is undertaken. This approach resulted
in datasets ranging from 84 variables to the size of the full
spectrum. The change in information content for each princi-
pal component (PC) in respect to variance is first evaluated.
Subsequently, a leave-one-out cross-validation scheme to
evaluate the classification accuracy obtained from a given
number of PC’s and scores is used.

4.1. Percent variance explained

PCA transforms the large1H NMR multivariate dataset
into a low-dimensional space that is conducive to visualiza-

tion. Each principal component (PC) is a linear combination
of the original variables where the first PC represents the
largest portion of the variance in the data and subsequent
PCs contain incrementally less of the variance. Thus, the
majority of the structure in the data can be represented in
a small number of PCs. The patterns in the data are rep-
resented by the scores associated with these PCs for each
observation. Scores for individual observations with similar
spectra, will have similar scores;sij = XiPCT

j , wheresij is
the score of observationi with PCj. Fig. 2 gives the basic
clustering patterns on the first two PCs under the total-scale
and auto-scale normalization schemes for the un-integrated
ANIT and elastase datasets, respectively. There are appar-
ent clustering patterns in the first two PCs for both datasets.
The number of variables that are retained in the new low-
dimensional dataset is usually determined by the percentage
of the variance explained; a cut-off of 90 to 95% is typi-
cal. For ANIT, the first two PCs describe∼77.0% for the
total-scale normalization (Fig. 2a) and∼76.1% of the vari-
ance for the auto-scaled normalization (Fig. 2b). The total-
scale and auto-scaled normalization schemes return∼85.6%
(Fig. 2c) and∼85.4% (Fig. 2d), respectively, for the elastase
data.

F
n

ig. 3. Plot of ppm window-width vs. the percentage of variance explained by
ormalization for ANIT and elastase, respectively.
each of the top 2 PCs for the total-scale ((a) and (c)) and auto-scale ((b) and (d))
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The ANIT and elastase datasets require 6 and 3 PCs,
respectively, to be retained in order to explain over 90% of
the variability. PCA was performed on each of 101 datasets
resulting from spectral integration over regions ranging from
0 (un-integrated) to 0.1 ppm. To visually analyze the percent-
age of the variance explained for each of these datasets the
top 2 PCs were evaluated for ANIT (Fig. 3a–b) and elastase
(Fig. 3c–d). It appears that there is a slight improvement in
the amount of variance explained by the first PC as the size
of the spectral integration region increases for both datasets
and both normalization approaches.

4.2. Classification accuracy

PCA is an unsupervised pattern recognition approach,
however classification into specific groups is usually the
end goal. Previously, a slight trend of increased variance
explained by the first PC is observed inFig. 3. PCA is used as
a precursor to a leave-one-out cross-validation to determine if
this observation is translated into an improved ability to clas-
sify observations into dose and time groups based on their
PC scores. This approach removes one observation from the
dataset and runs PCA on the remaining observations. Class

centroids are calculated from the PC score vectors based on
time and dosing information. The score for the left out obser-
vation is obtained by projecting it on the PC latent variables
retained. The left out observation is then classified based on
the Euclidean distance of this score from the class centroids.
This operation is repeated for all observations and the classi-
fication accuracy is computed as the proportion of correctly
classified observations to the total number of observations.
This classification accuracy is dependent upon the number of
PC latent variables and score vectors used to build the clas-
sifier.Fig. 4gives the classification accuracy for 1–5 PCs for
the ANIT and elastase datasets.

The most apparent observation inFig. 4 is that the vari-
ability of the classification accuracy achieved at each spectral
integration window width becomes less as more PCs are
retained. Additionally, there is not a specific window width
that stands out as achieving significantly better classification
accuracy. Also, for ANIT the classification accuracy is rel-
atively uniform, while it is much more erratic for elastase.
The conclusion reflected in an analysis of the variance of
the classification accuracy obtained over the 100 integrated
datasets.Table 1 gives the standard deviation for the top
10 PCs.

F
a

ig. 4. Plot of the ppm window-width vs. the classification for 1 to 5 PCs for
nd elastase, respectively.
the total-scale ((a) and (c)) and auto-scale ((b) and (d)) normalization forANIT
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Table 1
Standard deviation over classification accuracies obtained for each normal-
ization scheme

PCs ANIT Elastase

Total-scale Auto-scaled Total-scale Auto-scaled

1 5.32 3.41 15.53 18.11
2 5.73 4.51 5.79 6.50
3 3.44 3.55 7.04 9.30
4 2.19 1.99 6.52 8.43
5 1.95 2.34 8.09 10.06
6 1.54 2.02 8.51 10.75
7 1.48 2.06 8.48 10.21
8 1.60 1.84 7.71 10.07
9 1.56 1.74 7.99 10.73

10 1.57 1.73 7.90 10.65

In general it appears that the total-scale normalization
scheme is slightly more robust to the window width than
the auto-scale normalization. Of the 10 PCs for the ANIT
dataset the auto-scale normalization has standard deviations
larger than the total-scale in seven cases. In the case of the
elastase all standard deviations are larger for the auto-scaling.
Additionally, the auto-scale datasets (Fig. 3b and d) gener-
ally have lower classification accuracy than the total-scale
datasets (Fig. 4a and c). Lastly, it is apparent from both
Fig. 4c–d andTable 1that the elastase data is much more
variable in terms of classification accuracy. This result is not
surprising due to the small sample size associated with this
dataset; the leave-one-out cross-validation strategy only had
2 or 3 scores on which to calculate class centroids whereas
the ANIT dataset has 14 or 15.

5. Conclusions

Spectral integration and normalization are basic steps
associated with NMR-based metabonomic analyses. Using
PCA and a leave-one-out cross-validation classification
approach the sensitivity of pattern recognition to spectral
integration regions and normalization schemes is evaluated
on two distinctly different datasets. The first dataset of 75 rat
urine samples is focused on simulating drug-induced cholan-
g rats
d ds.
T les is
f ilar
t cted
t ccu-
r caled
n from
s 1 in
i and
v from
t ined
i racy
o vari-
a the

total-scaled data,Table 1. Finally, it appears that the clas-
sification accuracy is not highly sensitive to the size of the
spectral integration region chosen, but that less variability is
observed with data that are scaled to the total intensity of
the spectrum. The discoveries associated with spectral inte-
gration and normalization are from a limited study, however
PCA is a common approach shown to have applicability to
many target samples. Thus, it is believed that the findings can
be used as general guidance in most metabonomics analyses.
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